

Auraesm
Рекомендации развертыванию и эксплуатации

Введение
Программное обеспечение Auraesm представляет собой распределенную микросервисную систему, использующую распространённый стек технологий. В связи с этим, основные рекомендации по эксплуатации связаны с корректным развертыванием и взаимодействием её компонентов.
При работе с программным обеспечением могут быть полезны следующие рекомендации и решения:
1. Запускайте Auraesm с использованием систем контейнеризации, таких как Docker(docker-compose) - это значительно упростит развертывание системы и ее обновление.
1. Auraesm состоит из нескольких независимых компонентов (frontend, backend-сервисы, БД, брокер сообщений), которые в случае запуска в Docker представляют собой отдельные контейнеры, взаимодействующие через сеть.
Кроме того, наша компания окажет полное содействие по запуску и настройке системы, любому клиенту заказавшему наше программное обеспечение.
Пример запуска
Ниже приведены примеры файла docker-compose.yml для запуска системы (открытый контур), а также файла конфигурации системы
------------- docker-compose.yml -------------
services:
 rabbitmq:
 image: rabbitmq:management
 container_name: rabbitmq
 environment:
 RABBITMQ_DEFAULT_USER: admin
 RABBITMQ_DEFAULT_PASS: uGh2xie3oh
 ports:
 - "5672:5672"
 - "15672:15672"
 volumes:
 - rabbitmq_data:/var/lib/rabbitmq
 restart: unless-stopped

 postgres:
 container_name: postgres
 image: postgres:15
 volumes:
 - pg-data:/var/lib/postgresql/data
 environment:
 POSTGRES_USER: ${PG_USER}
 POSTGRES_PASSWORD: ${PG_PASS}
 POSTGRES_DB: ${PG_DB}
 ports:
 - 5432:5432

 mssql_intellect:
 image: mcr.microsoft.com/mssql/server:2022-latest
 container_name: mssql-intellect
 ports:
 - "1433:1433"
 environment:
 SA_PASSWORD: "YourStrong!Passw0rd"
 ACCEPT_EULA: "Y"
 volumes:
 - mssql_data:/var/opt/mssql
 restart: always

 soo-integration-service:
 image: docker.direct.farm/soo/integration-service:dev
 container_name: soo-integration-service
 volumes:
 - uploads:/uploads
 environment:
 INTELLECT_MSSQL_URL: ${INTELLECT_MSSQL_URL}
 PG_URL: ${PG_URL}
 RMQ_URL: ${RMQ_URL}
 APP_ENV: ${APP_ENV}
 WAZUH_URL: ${WAZUH_URL}
 WAZUH_USER: ${WAZUH_USER}
 WAZUH_PASS: ${WAZUH_PASS}
 WAZUH_VERIFY_TLS: ${WAZUH_VERIFY_TLS}
 ports:
 - 8070:8080
 depends_on:
 - postgres
 - mssql_intellect
 - rabbitmq

 soo-api-service:
 image: docker.direct.farm/soo/api-service:dev
 container_name: soo-api-service
 volumes:
 - uploads:/uploads
 environment:
 PG_URL: ${PG_URL}
 RMQ_URL: ${RMQ_URL}
 AUTH_HASH_KEY: ${AUTH_HASH_KEY}
 APP_ENV: ${APP_ENV}
 ports:
 - 8080:8080
 depends_on:
 - postgres
 - rabbitmq

 soo-incident-service:
 image: docker.direct.farm/soo/incident-service:dev
 container_name: soo-incident-service
 environment:
 PG_URL: ${PG_URL}
 RMQ_URL: ${RMQ_URL}
 ports:
 - 8090:8080
 depends_on:
 - postgres
 - rabbitmq

 soo-report-service:
 image: docker.direct.farm/soo/report-service:dev
 container_name: soo-report-service
 environment:
 PG_URL_ASYNC: ${PG_URL_ASYNC}
 RMQ_URL: ${RMQ_URL}
 STATIC_PATH: ${STATIC_PATH}
 SIGN_CERT: ${SIGN_CERT}
 SIGN_KEY: ${SIGN_KEY}
 SIGN_KEY_PASSWORD: ${SIGN_KEY_PASSWORD}
 SMTP_PORT: ${SMTP_PORT}
 SMTP_HOST: ${SMTP_HOST}
 SMTP_USER: ${SMTP_USER}
 SMTP_PASSWORD: ${SMTP_PASSWORD}
 SMTP_FROM: ${SMTP_FROM}
 volumes:
 - uploads:/app/static
 depends_on:
 - postgres
 - rabbitmq

 soo-telegram-service:
 image: docker.direct.farm/soo/telegram-service:dev
 container_name: soo-telegram-service
 environment:
 TELEGRAM_TOKEN: ${TELEGRAM_TOKEN}
 PG_URL_ASYNC_TG: ${PG_URL_ASYNC_TG}
 PG_URL_TG: ${PG_URL_TG}
 RMQ_URL: ${RMQ_URL}
 REVIEW_CHAT_ID: ${REVIEW_CHAT_ID}
 depends_on:
 - postgres
 - rabbitmq

 soo-tg-network-service:
 image: docker.direct.farm/soo/tg-network-service:dev
 container_name: soo-tg-network-service
 environment:
 TELEGRAM_TOKEN: ${TELEGRAM_TOKEN_NETWORK}
 PG_URL_ASYNC_TG: ${PG_URL_ASYNC_TG}
 PG_URL_TG: ${PG_URL_TG}
 RMQ_URL: ${RMQ_URL}
 depends_on:
 - postgres
 - rabbitmq
 - soo-telegram-service

 soo-front:
 image: docker.direct.farm/soo/front:dev
 container_name: soo-front
 ports:
 - "3000:3000"
 environment:
 VITE_BACKEND_URL: ${VITE_BACKEND_URL}
 APP_ENV: ${APP_ENV}

volumes:
 pg-data:
 mssql_data:
 rabbitmq_data:
 uploads:
 driver: local
 driver_opts:
 o: bind
 type: none
 device: /home/soo/uploads

------------- .env -------------
PG_URL=postgres://user:pass@postgres:5432/postgres
RMQ_URL=amqp://admin:uGh2xie3oh@rabbitmq:5672/

INTELLECT_MSSQL_URL=sqlserver://sa:YourStrong!Passw0rd@mssql_intellect:1433?database=master&encrypt=disable

PG_USER=user
PG_PASS=pass
PG_DB=postgres

PG_URL_ASYNC=postgresql+asyncpg://user:pass@postgres:5432/postgres

STATIC_PATH=static

SIGN_CERT=
SIGN_KEY=
SIGN_KEY_PASSWORD=

PG_URL_TG=postgresql://user:pass@postgres:5432/telegram
PG_URL_ASYNC_TG=postgresql+asyncpg://user:pass@postgres:5432/telegram

TELEGRAM_TOKEN=your_telegram_token_here
TELEGRAM_TOKEN_NETWORK=your_telegram_network_token_here
REVIEW_CHAT_ID=your_chat_id_here

SMTP_HOST=smtp.mail.ru
SMTP_PORT=465
SMTP_USER=your_email@mail.ru
SMTP_PASSWORD=your_email_password
SMTP_FROM=your_email@mail.ru

AUTH_HASH_KEY=your_auth_hash_key_here

VITE_BACKEND_URL=http://localhost:8080

APP_ENV=development

WAZUH_URL=https://wazuh_host:9200
WAZUH_USER=wazuh_user
WAZUH_PASS=wazuh_password
WAZUH_VERIFY_TLS=false

Для запуска системы на таком примере необходимо
1. Выполнить команду docker-compose up -d
1. Проверить доступность системы на портах 3000 (фронтенд) и 8080 (бэкенд АПИ)
1. В случае возникновения проблем, выполнить первичную диагностику с использованием команд docker logs для соответствующих сервисов (soo-api-service, soo-integration-service, soo-front и др.)
Рекомендации по эксплуатации
Как сказано во введении, система не имеет специфических проблем и рекомендаций, в тоже время стоит обозначить общие рекомендации:
1. Для снижения риска потери данных в случае сбоев инфраструктуры – рекомендуется выполнять периодическое резервное копирование данных системы. Для этого стоит использовать встроенные средства СУБД, такие как pg_dump для PostgreSQL. Также стоит выполнять резервное копирование пользовательских файлов системы, которые в примере выше располагаются в каталоге /home/soo/uploads
3. Для выявления практически любых ошибок в работе системы могут быть использованы команды docker logs для соответствующих сервисов (soo-api-service, soo-integration-service, soo-front и др.)
